FISEVIER

Contents lists available at ScienceDirect

Journal of Alloys and Compounds

journal homepage: www.elsevier.com/locate/jallcom

Preparation and characterization of nanocrystalline Mg₂FeH₆

Yan Wang, Fangyi Cheng, Chunsheng Li, Zhanliang Tao, Jun Chen*

Institute of New Energy Material Chemistry and Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, PR China

ARTICLE INFO

Article history:
Received 4 June 2010
Received in revised form 8 August 2010
Accepted 13 August 2010
Available online 28 September 2010

Keywords: Nanocrystalline Mg₂FeH₆ Ball milling Rietveld refinement Hydrogen storage Desorption

ABSTRACT

We report on the preparation and characterization of nanocrystalline Mg_2FeH_6 that is prepared by ball milling of 3Mg+Fe mixture under relatively lower hydrogen pressure (5.5 bar) at room temperature. The phase, composition and morphology of the as-milled powders are characterized by X-ray diffraction (XRD), Transmission electron microscope (TEM) and high-resolution TEM (HRTEM). The results show that the optimum formation time of Mg_2FeH_6 phase is $100\,h$ and the abundance is about $90.1\,\text{mm}$ deduced from Reitveld refinement. Together with Mg_2FeH_6 , small amount of Fe and MgO are also present in the milled product. The as-prepared nanocrystalline Mg_2FeH_6 , which exhibits a chrysanthemum-like spherical shape (Ø $100-200\,\text{nm}$) with aggregated nanoparticles (Ø $10-20\,\text{nm}$), starts to desorb hydrogen at $335\,\text{K}$ and ends at $613\,\text{K}$ with a total weight loss of $5.15\,\text{mm}$. The desorption enthalpy and entropy for the as-prepared nanocrystalline Mg_2FeH_6 are $-67.2\pm8\,\text{kJ/mol}\,H_2$ and $-120.1\pm15\,\text{J/K}\,\text{mol}\,H_2$, respectively. © $2010\,\text{Elsevier}\,B.V.\,\text{All}$ rights reserved.

1. Introduction

Mg-based transition-metal complex hydrides such as Mg₂NiH₄, Mg₂CoH₅, and Mg₂FeH₆, which have been rationalized by the 18-electron counting rules, have been considered as promising hydrogen-storage materials due to their high hydrogen capacity (gravimetric 5.47 wt% hydrogen and volumetric 150 kg H_2 m⁻³) and low cost [1–5]. The preparation of Mg₂FeH₆ becomes a rather difficult task and has attracted much attention. The reason is that Mg₂FeH₆ cannot be accomplished by directly hydrogenation of the binary alloys, since neither the dehydrogenated intermetallic compound (i.e., Mg₂Fe) nor stable alloy between Mg and Fe exists [6]. In 1984, Didisheim et al. reported for the first time the preparation of Mg₂FeH₆ by sintering 2Mg + Fe powders at elevated temperature of 723-793 K and hydrogen pressure of 20-120 bar for 2–10 days [7]. Selvam et al. demonstrated that the as-prepared sample by sintering at hydrogen pressure of 20-120 bar still contained up to 50% of non-reacted elements [8]. In the meantime, the mechanical alloying that is mainly based on milling of Mg+Fe or MgH₂ + Fe mixture under different hydrogen pressure from about 10 to 100 bar has been applied to prepare Mg₂FeH₆ at mild temperature [9–13]. For example, Varin et al. reported that the yield of Mg₂FeH₆ was 57 wt% after continuous mechanical alloying for 270 h under a hydrogen atmosphere at 8.8 bar [11]. Sai Raman et al. displayed that for 2Mg+Fe mixture, milling under hydrogen (10 bar) produced 63% Mg₂FeH₆ excluding oxides [12]. George et al. reported a yield of 84 wt% Mg₂FeH₆ phase through mechanical alloying of 2MgH₂ + Fe mixture for 72 h followed by sintering at 673 K under a hydrogen atmosphere at 100 bar [13]. From previous literatures [9–14], it can be seen that lowering the hydrogen pressure during the mechanical alloying or sintering and increasing the purity of Mg₂FeH₆ are needed. Furthermore, it is also obviously to raise the questions that follow: (1) How large is the crystalline size during the phase change through the mechanical alloying; (2) The amorphous phase is generally described for the long-time ball milling (or mechanical alloying), while are there nanocrystals in the as-prepared samples and if yes, what is the effect on the hydrogen desorption. Therefore, to lower the hydrogen pressure during the preparation process and to increase the proportion of Mg_2FeH_6 in the synthesized product, we here report on the preparation of nanocrystalline Mg₂FeH₆ with high proportion and regular morphology by ball milling under relatively low hydrogen pressure. Interestingly, the as-prepared nanocrystalline Mg₂FeH₆ desorbs hydrogen at 335 K with a total weight loss of 5.15 wt% at the ending of 613 K.

2. Experimental details

2.1. Synthesis

Magnesium powder (purity of 99.99%, $0.5{\text -}1\,\mu\text{m}$) and iron powder (purity of 99.96%, $50{\text -}100\,\text{nm}$) were mixed in a 3Mg:Fe atomic ratio and milled in a Fritsch P7 planetary with operating at a rotation velocity of 320 rpm. Excessive Mg was subjected to the milling system because of the easy loss of Mg caused by adhering and cold-welding to the balls and the vial walls. The weight ratio between the ball and powder is 40:1. High-purity hydrogen (7 N) of 5.5 bar was introduced into the vial through a connection valve. The milling was carried out for 110h. At regular intervals, a small amount of powder was taken out for phase analysis. All material handing (including weighing and loading) was carried out in a glove box under an

^{*} Corresponding author. Tel.: +86 22 23502604; fax: +86 22 23502604. E-mail address: chenabc@nankai.edu.cn (J. Chen).

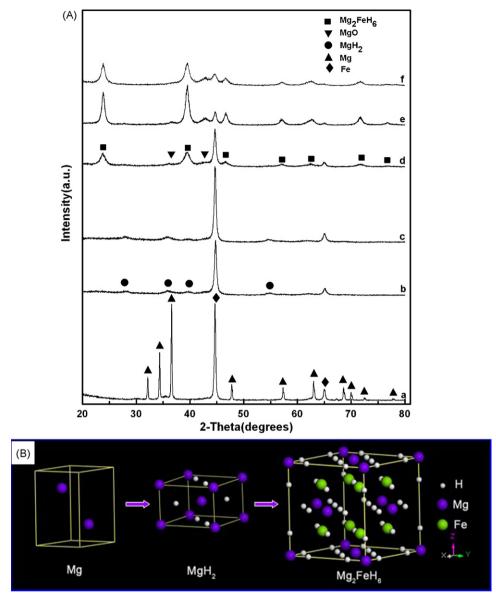
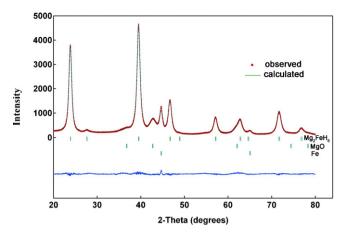


Fig. 1. (A) Powder XRD patterns of 3Mg + Fe mixture as a function of milling time: (a) 0 h, (b) 20 h, (c) 60 h, (d) 80 h, (e) 100 h and (f) 110 h at the hydrogen pressure of 5.5 bar. (B) Structural model sketch of the phase transformation from Mg to MgH₂ and then to Mg₂FeH₆.

inert pure argon (99.999%) atmosphere so as to minimize the contamination effect of oxygen and water on the sample.

2.2. Characterization

Powder X-ray diffraction (XRD) patterns were taken on a Rigaku-Dmax 2500 X-ray diffractometer using Cu $K\alpha$ radiation (λ = 1.541 78 Å). The X-ray intensity was measured over a diffraction angle from 20° to 80° with a velocity of 0.02° per step. Rietveld refinement was performed to determine the phase composition and abundance of the as-milled powders using the Rietan-2000 program [15]. Transmission electron microscope (TEM) and high-resolution TEM (HRTEM) analyses were performed on a Philips Tecnai F 20 field emission TEM using an accelerating voltage of 200 kV. Thermogravimetry (TG) measurement was carried out by using computer controlled Hiden Isochema analyzer (IGA 001, Hiden Analytical Ltd) under vacuum. The pressure–composition–temperature (P–C–T) curves for hydrogen absorption and desorption were determined by using a computer controlled "Gas Reaction Controller" apparatus (PCT-2008, Shanghai).


3. Results and discussion

3.1. XRD analyses

Fig. 1A shows a series of powder X-ray diffraction (XRD) patterns of the as-milled samples obtained at different milling time. It can

be seen that the phase composition has been greatly changed after ball milling. By inspecting the XRD pattern of the initial 3Mg+Fe mixture, the presence of metallic Mg and Fe can be readily identified. After 20 h of milling, the Mg precursor has nearly disappeared and new peaks arise, indicating the formation of MgH₂ phase (Joint Committee on Powder Diffraction Standards (JCPDS) No. 12-0697). Further ball milling up to 60 h does not significantly change the phase distribution, whereas the peak intensity ascribed to MgH₂ and Fe decreases obviously after 80 h. The milling finally results in the formation of a new hydride phase Mg₂FeH₆ (JCPDS No. 75-0675). Accordingly, the preparation of Mg₂FeH₆ in this study involves the following two-step reactions.

By comparison, for prolonged milling, there is no further increase of the peak intensity. In addition to Mg₂FeH₆, the presence of MgO and the remaining unreacted Fe can be observed in the final product. It can be seen that the peak intensity ascribed to MgH₂ and Fe decreases obviously, and the milling results in the formation of a new hydride phase Mg₂FeH₆ after 80 h. Further ball milling to 100 h, the peak of MgH₂ disappears, the peak intensity of Mg₂FeH₆ increases and there are distinguishable peaks of MgO.

Fig. 2. Observed XRD pattern (red solid circles) and calculated profile (green solid lines) from Rietveld refinement of the product obtained by ball milling the 3Mg+Fe mixture for 100 h at the hydrogen pressure of 5.5 bar. Short vertical bars indicate the Bragg reflections of each fitted phase, as marked for Mg₂FeH₆, MgO and Fe. The bottom blue line is the difference between observed pattern and Rietveld refinement. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of the article.)

From the above XRD patterns, we can infer that there are two kinds of trends for MgH_2 , one is consumed to form Mg_2FeH_6 and the other is ascribed to MgO. Thus, it could conclude that MgO possibly originates from the reaction of highly active MgH_2 (rather than Mg) and polluted oxygen in the preparation process (especially during periodic extraction of powders).

The structure model sketch of the phase transformation from Mg to Mg_2FeH_6 is illustrated in Fig. 1B. First, hydrogen sorption on Mg matrix causes the MgH_2 intermediate product with tetragonal structure at stoichiometry ratio 1:2 (Mg:H). Subsequently, the reaction of MgH_2 and Fe at hydrogen atmosphere forms the Mg_2FeH_6 phase with cubic symmetry, showing the regular octahedral FeH_6 group surrounded by eight Mg atoms in a cubic configuration of Mg_2FeH_6 .

$$Mg(s) + H_2(g) \rightarrow MgH_2(s)$$
 (1)

$$2MgH_2(s) + Fe(s) + H_2(g) \rightarrow Mg_2FeH_6(s) \tag{2}$$

3.2. Rietveld refinement

In order to determine the phase composition and abundance of the as-milled powders, Rietveld refinement has been performed to analyze the XRD data using the Rietan-2000 program. Fig. 2 shows the observed XRD pattern, calculated pattern, and the difference between the observed and the calculated pattern by Rietveld refinement. The refinement results are listed in Table 1. The quite low R-weighted pattern ($R_{\rm wp}$) and goodness fit (S) indicate the reliability of the refined output [16]. The refinement confirms that the as-milled product contains a single hydride phase Mg_2FeH_6 , residual Fe and a small amount of MgO. The refined lattice parameter is found to be a = 6.4424(1) Å for the cubic Mg_2FeH_6 , in good agreement with earlier reports [17].

Table 1Lattice parameter and phase abundance of the as-milled powders deduced from Rietveld refinement of XRD data.

Phase	Mg_2FeH_6	MgO	Fe
Crystal symmetry	Cubic	Cubic	Cubic
Lattice parameter (Å)	a = 6.4424(1)	a = 4.2211(4)	a = 2.8686(2)
Abundance (wt%)	90.1	4.0	5.9

 $R_{\rm wp}$ = 5.34, S = 1.15

3.3. TEM and HRTEM analyses

Transmission electron microscope (TEM) and high-resolution TEM (HRTEM) analyses have been carried out to characterize the structure of the obtained product. Fig. 3a shows the representative TEM image of the as-prepared powders milled for 100 h. It can be observed that the product exhibits a chrysanthemum-like spherical shape with diameters of 100-200 nm with aggregated nanoparticles. The TEM image in Fig. 3b reveals that the spheres are composed of aggregated nanoparticles (10–20 nm). Such regular morphology might be caused by the existence of the residual Fe, which affords magnetic attraction for the assembly of nanoparticles. In order to obtain the detailed structural information, HRTEM has been performed (Fig. 3c). The observed interplanar distance of 0.278, 0.213, and 0.204 nm can be attributed to the (220) plane of Mg₂FeH₆, the (200) plane of MgO, and the (110) plane of Fe, respectively. This result confirms a mixed Mg₂FeH₆-MgO-Fe nanocrystalline structure, agreeing with the XRD analysis. Fig. 3d further shows the HRTEM image of an individual Mg₂FeH₆ nanoparticle along a different orientation, which is present in spherical shape with particle size of approximately 10 nm. The mutually perpendicular lattice fringes correspond to the (22-1) and (01-1) plane of Mg₂FeH₆, respectively. The corresponding fast Fourier transform (FFT) pattern (inset of Fig. 3d) can be well indexed to the cubic Mg₂FeH₆ being viewed down the [1 1 1] axis.

3.4. Hydrogen-storage properties

To determine the desorption of the as-prepared nanocrystalline Mg₂FeH₆, the TG analysis has been performed on an intelligent Gravimetric Analyzer (IGA 001, Hiden Isochema) under vacuum (Fig. 4). Obviously, the milled sample delivers two distinguished steps of mass loss. The first desorption starts at 335 K and ends at 521 K with a mass loss of approximately 0.75 wt%, corresponding to the decomposition of Mg₂FeH₆ as summarized in Eq. (3). It should be pointed out that the reaction is incompletely because of the low temperature. When the temperature is increased from 521 to 613 K, the sample loses weight of approximately 4.40 wt%, which is attributed to the integrated effects of Eqs. (3) and (4) (not one). The XRD curve for the dehydrogenated Mg₂FeH₆ has been showed in Fig. 5, and it can be seen that the final product is composed of Mg, Fe and some residual MgO. The total mass loss is 5.15 wt%, which should be from the hydrogen release of Mg₂FeH₆ phase in the milled product, since the involved other components (i.e., MgO and Fe) are inactive under the testing condition. Compared to the theoretical 5.47 wt% hydrogen content of Mg₂FeH₆, it can be inferred that the abundance of Mg₂FeH₆ phase is 94.1 wt%, which is slightly higher than the value determined from the Rietveld refinement of XRD. The high abundance of targeted Mg₂FeH₆ is attributed to the use of nanoscaled Fe as the precursor, which provides higher reactivity with the intermediate MgH₂, in comparison with bulk Fe commonly used in previous synthesis.

$$Mg_2FeH_6(s) \to 2MgH_2(s) + Fe(s) + H_2(g)$$
 (3)

$$MgH_2(s) \rightarrow Mg(s) + H_2(g)$$
 (4)

Fig. 6 shows the P–C–T curves in the first cycle of the obtained nanocrystalline Mg_2FeH_6 at 573, 548 and 523 K, respectively. All the P–C–T curves were measured without any activation process. Around hydrogen content of 2.5 wt%, the curves for both dehydrogenation and hydrogenation are uncommon, possibly due to the combination of simultaneously dehydriding and hydriding of the multiphases. From Fig. 6, it can also be seen that rehydrogenation of $Mg+Fe+H_2$ to form Mg_2FeH_6 is possible.

We take the hydrogen pressure at the point of hydrogen content 1.5 wt% as the desorption plateau, giving the data of (573 K,

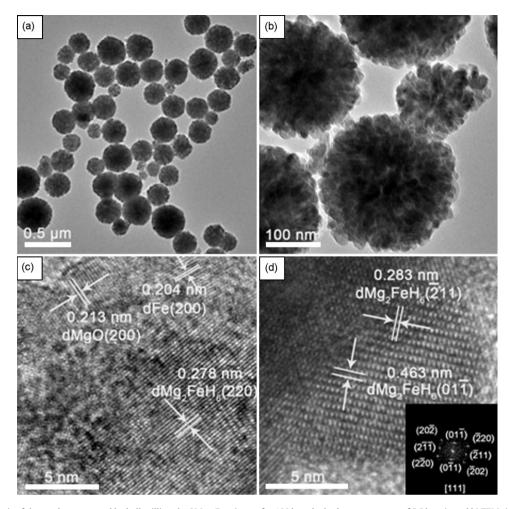
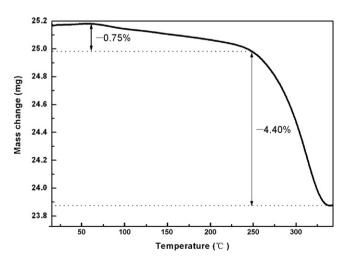
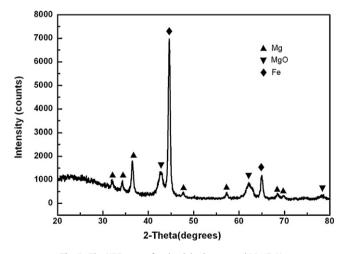
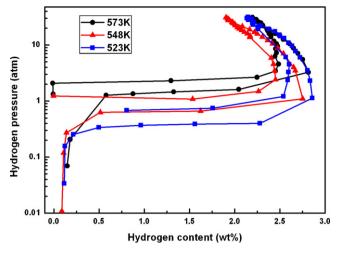


Fig. 3. Structural analysis of the product prepared by ball milling the 3Mg+Fe mixture for 100 h at the hydrogen pressure of 5.5 bar: (a and b) TEM; (c and d) HRTEM images. The inset of (d) is the corresponding fast Fourier transform (FFT) patterns of Mg₂FeH₆.

1.484 bar), (548 K, 0.672 bar), and (523 K, 0.384 bar). Fig. 7 shows the van't Hoff plot for the obtained Mg_2FeH_6 samples. From Fig. 7, the decomposition enthalpies and entropies of Mg_2FeH_6 are calculated, as summarized in Table 2. The decomposition enthalpy and entropy for the as-prepared Mg_2FeH_6 are $-67.2\pm 8\, kJ/mol\, H_2$ and $-120.1\pm 15\, J/K\, mol\, H_2$, respectively. Compared to the reported results, we can see that the absolute values of the present


Fig. 4. TG curve of the as-prepared Mg₂FeH₆ under vacuum.

 $\textbf{Fig. 5.} \ \ \text{The XRD curve for the dehydrogenated } Mg_2FeH_6.$

 $\label{eq:Table 2} \textbf{The decomposition enthalpy and entropy of the obtained } Mg_2FeH_6 \ samples \ calculated \ from \ the \ van't \ Hoff \ plot.$

No.	Enthalpy (ΔH) $(kJ/mol H_2)$	Entropy (ΔS) (J/K mol H ₂)	Reference
1	-67.2 ± 8	-120.1 ± 15	This work
2	-80 ± 28	-137 ± 13	[5]
3	-87 ± 3	-147 ± 15	[18]
4	-86 ± 6	-147 ± 9	[8]
5	-82.4 ± 5.8	-140.2 ± 8.7	[14]

Fig. 6. The P-C-T curves of the obtained nanocrystalline Mg_2FeH_6 at 573, 548 and 523 K. respectively.

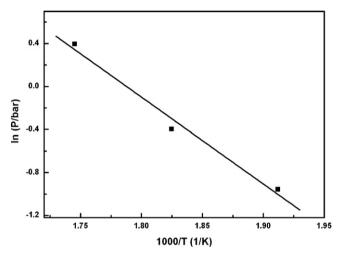


Fig. 7. The van't Hoff plot for the nanocrystalline Mg₂FeH₆ samples.

enthalpy and entropy are some lower, indicating that nanostructured Mg_2FeH_6 shows favorable thermodynamics.

4. Conclusions

In summary, we have prepared high proportion of nanocrystalline Mg_2FeH_6 by ball milling of 3Mg+Fe mixture under relatively lower hydrogen pressure and room temperature. The sample desorbs up to 5.15 wt% of hydrogen under vacuum from 335 to $613\,K$ with a desorption enthalpy of $-67.2\pm 8\,kJ/mol\,H_2$. In addition, we have also observed the chrysanthemum-like nanostructure composed of aggregated Mg_2FeH_6 . Viewing down the [1 1 1] zone axis, the nanocrystal Mg_2FeH_6 is spherical and the diameter is approximately 10 nm. The present preparation of nanocrystalline Mg_2FeH_6 should shed light on making it possible to be further applied as hydrogen-storage materials.

Acknowledgments

This work was supported by the Research Programs of NSFC (50771056), MOST (2007AA05Z149 and 2009AA03Z224), and MOE (IRT-0927).

References

- [1] B. Peng, J. Chen. Coordin. Chem. Rev. 253 (2009) 2805-2813.
- [2] Q. Li, J. Liu, K.C. Chou, G.W. Lin, K.D. Xu, J. Alloys Compd. 466 (2008) 146– 152.
- [3] H.Y. Shao, T. Liu, Y.T. Wang, H.R. Xu, X.G. Li, J. Alloys Compd. 465 (2008) 527-533.
- [4] I.G. Fernandez, G.O. Meyer, F.C. Gennari, J. Alloys Compd. 464 (2008) 111–117.
- [5] J.A. Puszkiel, P.A. Larochette, F.C. Gennari, J. Alloys Compd. 463 (2008) 134–142.
- [6] R.A. Varin, S.H. Li, Z. Wronski, O. Morozova, T. Khomenko, J. Alloys Compd. 390 (2005) 282–296.
- [7] J.J. Didisheim, P. Zolliker, K. Yvon, J. Fischer, M. Gubelmann, Inorg. Chem. 23 (1984) 1953–1957.
- [8] P. Selvam, K. Yvon, Int. J. Hydrogen Energy 16 (1991) 615-617.
- [9] J. Hout, S. Boily, E. Akiba, J. Alloys Compd. 280 (1998) 306–309.
- [10] F.C. Gennari, F.J. Castro, J. Alloys Compd. 339 (2002) 261–267.
- [11] R.A. Varin, S.L. Li, Ch. Chiu, L. Guo, O. Morozova, T. Khomenko, Z. Wronski, J. Alloys Compd. 390 (2005) 282–296.
- [12] S.S. Sai Raman, D.J. Davidson, J.L. Bobet, O.N. Srivastava, J. Alloys Compd. 333 (2002) 282–290.
- [13] L. George, V. Drozd, A. Durygin, J.H. Chen, S.K. Saxena, Int. J. Hydrogen Energy 34 (2009) 3410–3416.
- [14] X.Z. Zhang, Y. Yang, J. Qu, W. Zhao, L. Xie, W.H. Tian, X.G. Li, Nanotechnology 21 (2010) 095706.
- [15] H. Ma, S.Y. Zhang, W.Q. Ji, Z.L. Tao, J. Chen, J. Am. Chem. Soc. 130 (2008) 5361–5367.
- [16] R.A. Young, The Rietveld Method, Oxford University Press, Oxford, 1993 (Chapter 1).
- [17] Y. Song, W.C. Zhang, R. Yang, Int. J. Hydrogen Energy 34 (2009) 1389–1398.
- [18] J.A. Puszkiel, P.A. Larochette, F.C. Gennari, Int. J. Hydrogen Energy 33 (2008) 3555–3560.